Math 255A Lecture 23 Notes

Daniel Raban

November 21, 2018

1 The Spectral Theorem for Compact, Self-Adjoint Operators

1.1 Orthogonal projections and the resolvent

Let *H* be a Hilbert space, and let $T : H \to H$ be compact and self-adjoint. Then $\operatorname{Spec}(T) \subseteq \mathbb{R}$. If $\lambda \in \operatorname{Spec}(T) \setminus \{0\}$, then $R(z) = (T - zI)^{-1} = \frac{\Pi_{\lambda}}{\lambda - z} + \operatorname{Hol}(z)$ for $0 < |z - \lambda| < \varepsilon \ll 1$, where Π_{λ} is an orthogonal projection with $\operatorname{im}(\Pi_{\lambda}) = \ker(T - \lambda I)$.

Let λ_1, λ_2 be distinct nonzero eigenvalues of T, and notice that

$$\Pi_{\lambda_i}\Pi_{\lambda_k} = 0$$

if $j \neq k$. This follows from the fact that $\ker(-\lambda_j I) \perp \ker(T - \lambda_k I)$. It follows that the series $\sum_{j\geq 1} \pi_{\lambda_j} x$ converges in H for all x. Indeed,

$$\sum_{j=1}^{N} \|\Pi_{\lambda_j} x\|^2 \le \|x\|^2$$

for each N by Bessel's inequality, so the same bound holds for the infinite sequence. Then

$$\left\|\sum_{j=1}^{N} \Pi_{\lambda_j} x - \sum_{j=1}^{M} \Pi_{\lambda_j} x\right\|^2 = \left\|\sum_{j=M+1}^{N} \Pi_{\lambda_j} x\right\|^2 = \sum_{j=M+1}^{N} \|\Pi_{\lambda_j} x\|^2 \xrightarrow{N, M \to \infty} 0$$

If we let $\Pi x = \sum_{j \ge 1} \Pi_{\lambda_j} x$, then $\Pi \in \mathcal{L}(H, H)$ is an orthogonal projection.

Proposition 1.1. For all $x \in H$ and $z \in \mathbb{C} \setminus \mathbb{R}$,

$$R(z)x = (T - zI)^{-1}x = \sum_{j=1}^{\infty} \frac{\prod_{\lambda_j} x}{\lambda_j - z}.$$

The series in the right hand side converges with $\|\sum_{j=1}^{\infty} \frac{\prod_{\lambda_j} x}{\lambda_j - z}\| \le \|x\|/|\operatorname{Im}(z)|$.

Proof. Consider

$$f(z) = \langle R(z)x, y \rangle - \sum_{j=0}^{\infty} \frac{\langle \Pi_{\lambda_j} x, y \rangle}{\lambda_j - z}$$

for all $x, y \in H$ and $z \in \mathbb{C} \setminus \mathbb{R}$. Then f is holomorphic on $\mathbb{C} \setminus \{0\}$, $||f(z)| \le 2||x|| ||y|| / |\operatorname{Im}(z)$, and $|f(z)| \le O(1/|z|^2)$ as $|z| \to \infty$. Indeed,

$$R(z) = (T - zI)^{-1} = ((-z)(I - T/z))^{-1} = -\frac{1}{z}I + O(1/|z|^2)$$
$$\sum_{j=1}^{\infty} \frac{\Pi_{\lambda_j}}{\lambda_j - z} = -\frac{1}{z} \underbrace{\sum_{j=1}^{\infty} \Pi_{\lambda_j}}_{=I} + I(1/|z|^2),$$

and we get the decay of f. We can write the Laurent expansion at z = 0,

$$f(z) = \sum_{j=-\infty}^{\infty} a_j z^j, \qquad \frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{z^{j+1}} dz$$

for $0 < |z| < \infty$.

We claim that $a_j = 0$ for all j. If $j + 1 \ge 0$, let $R \gg 1$. Then $|a_j| \le O(1/R^2)R \to 0$. So $f(z) = \sum_{j=-\infty}^{-2} a_j z^j$. If j + 1 < 0, then let k = -j - 1 > 0. Then, assuming that $\int f(z) z^{k-2} dz = 0$.

$$\int_{|z|=R} f(z)z^k \, dz = \int_{|z|=R} f(z)z^{k-2}(z^2 - R^2) \, dz,$$

 \mathbf{SO}

$$\begin{split} \left\| \int_{|z|=R} f(z) z^k \, dz \right\| &\leq 2 \|x\| \|y\| \int_{|z|=R} \frac{R^{k-2}}{|\operatorname{Im}(z)|} |z^2 - R^2| \, |dz| \\ & z \stackrel{R}{=} R \frac{2 \|x\| \|y\|}{R} R^{k-2} R^2 \int_{|w|=1} \frac{|w^2 - 1|}{|\operatorname{Im}(w)|} \, |dw| \\ &= 2 \|x\| \|y\| R^k \underbrace{\int_{|w|=1} \frac{|w^2 - 1|}{|\operatorname{Im}(w)|} \, |dw|}_{<\infty}. \end{split}$$

Letting $R \to 0$, we get $a_j = 0$ for all j.

Remark 1.1. Observe that

$$||R(z)x||^2 = \sum_{j=0}^{\infty} \frac{1}{|\lambda - z|^2} ||\Pi_{\lambda_j}x||^2.$$

We also get that

$$||(T - zI)^{-1}||_{\mathcal{L}(H,H)} = \frac{1}{\operatorname{dist}(z, \operatorname{Spec}(T))}.$$

This estimate remains valid for all self-adjoint $T \in \mathcal{L}(H, H)$, but we will not prove that in this course.

1.2 The missing projection

Write $\lambda_0 = 0$ and $\Pi_{\lambda_0} = I - \Pi$. Then Π_{λ_0} is an orthogonal projection.

Proposition 1.2. Π_{λ_0} is the orthogonal projection onto ker(T).

Proof. Write

$$x = (T - zI)R(z)x = \sum_{j=1}^{\infty} \frac{(T - zI)\Pi_{\lambda_j}x}{\lambda_j - z} + \frac{(T - z)\Pi_{\lambda_0}x}{-z} = \underbrace{\sum_{j=1}^{\infty} \Pi_{\lambda_j}x + \Pi_{\lambda_0}x}_{=x} - \frac{T\Pi_{\lambda_0}x}{z}$$

So $T\Pi_{\lambda_0} = 0$, and $\operatorname{im}(\Pi_{\lambda_0} \subseteq \ker(T))$. IF $x \in \ker(T)$, then

$$-x/z = R(z)x = \underbrace{\sum_{j=1}^{\infty} \frac{\Pi_{\lambda_j} x}{\lambda_j - z}}_{=0} - \frac{\Pi_{\lambda_0} x}{z}.$$

So $x = \prod_{\lambda_0} x$, making $x \in im(\prod_{\lambda_0})$.

We can write $x = \sum_{j=0}^{\infty} \prod_{\lambda_j} x$ for all x, which is equivalent to $H = \bigoplus_{j\geq 0} H_j$, where $H_j = \prod_{\lambda_j} H = \ker(T - \lambda_j I)$.

Theorem 1.1 (spectral theorem for compact, self-adjoint operators). Let $T \in \mathcal{L}(H, H)$ be compact and self-adjoint. Then H has an orthonormal basis consisting of eigenvectors of T.

Proof. Choose an orthonormal basis in $H_j, j \ge 0$.